
Frustration effects in an anisotropic checkerboard lattice Hubbard model

Takuya Yoshioka,1 Akihisa Koga,2 and Norio Kawakami2
1Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan

2Department of Physics, Kyoto University, Kyoto 606-8502, Japan
�Received 11 August 2008; published 14 October 2008�

We study the ground-state properties of the geometrically frustrated Hubbard model on the anisotropic
checkerboard lattice with nearest-neighbor hopping t and next-nearest-neighbor hopping t�. By using the
path-integral renormalization-group method, we study the phase diagram in the parameter space of the Hub-
bard interaction U and the frustration-control parameter t� / t. Close examinations of the effective hopping, the
double occupancy, the momentum distribution, and the spin- and charge-correlation functions allow us to
determine the phase diagram at zero temperature, at which the plaquette-singlet insulator emerges besides the
antiferromagnetic insulator and the paramagnetic metal. Spin-liquid insulating states without any kind of
symmetry breaking cannot be found in our frustrated model.
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I. INTRODUCTION

Strongly correlated electron systems with frustrated lattice
structures have attracted much interest recently. Typical ex-
amples are the spinel compound LiV2O4 �Ref. 1� and the
pyrochlore compound Tl2Ru2O7,2,3 where the heavy-fermion
behavior and the Mott transition without magnetic ordering
were observed. In these compounds, electron correlations on
the frustrated lattice should play a vital role in yielding a
variety of intriguing properties at low temperatures. Stimu-
lated by the above experimental findings, the Hubbard model
on the frustrated pyrochlore lattice and its two-dimensional
�2D� analog, called the checkerboard lattice, have been stud-
ied intensively.4–30

In a previous paper,20 we studied the zero-temperature
properties of the Hubbard model on the isotropic checker-
board lattice at half filling, and found that the system under-
goes a first-order phase transition to the plaquette-singlet in-
sulating �PSI� phase at a finite Hubbard interaction. Since the
analysis was focused only on the fully frustrated model, it is
desirable to compare it with less frustrated models, in order
to clarify how the frustration affects the nature of the metal-

insulator transition. In this connection, we recall that the
checkerboard lattice is continuously connected to the ordi-
nary square lattice with electron hopping t by reducing the
amplitude of electron hopping t� along diagonal bonds �see
Fig. 1�. For the square lattice without frustration, it is known
that the introduction of infinitesimal Hubbard repulsion in-
duces the metal-insulator transition to the antiferromagnetic
insulating �AFI� phase. Therefore, the anisotropic checker-
board lattice, where the amplitude of diagonal hopping t� is
modulated to interpolate the above two limiting cases, en-
ables us to clarify the role of frustration in the checkerboard
lattice Hubbard model.

Motivated by this, here we investigate the Hubbard model
on the anisotropic checkerboard lattice �Fig. 1�a�� at half
filling. So far, theoretical investigations in this direction have
been put forward only in the strong-coupling limit, where the
half-filled Hubbard model can be mapped to the Heisenberg
model with the exchange coupling J=4t2 /U �J�=4t�2 /U�.
Intensive studies on the spin-1/2 Heisenberg model on the
anisotropic checkerboard lattice31–35 concluded that for large
�small� J� /J, the plaquette valence-bond crystal �antiferro-
magnetic �AF� Néel� phase is stabilized, and the correspond-
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FIG. 1. �Color online� �a� An-
isotropic checkerboard lattice. The
solid �dotted� lines correspond to
the transfer integral t �t��. Doubly
degenerate plaquette valence-bond
ordering pattern is shown sche-
matically. Within each unit cell
the sublattice sites are denoted by
1 and 2. �b� The free-electron
band structure ���k�−�0 along
symmetry lines in the Brillouin
zone �BZ� for different choices of
t� / t, where �0 is the chemical po-
tential at half filling.
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ing phase transition is of first order. In this paper we aim to
establish the ground-state phase diagram of the anisotropic
checkerboard lattice Hubbard model in the wide parameter
region from the weak to strong frustration and correlation
limit. To this end, we investigate the quantum phase transi-
tions at zero temperature by means of the path-integral
renormalization-group �PIRG� method developed by Imada
and co-workers,36–39 which is particularly efficient for study-
ing electron correlations under strong frustration. We com-
pute the effective hopping, the double occupancy, the mo-
mentum distribution, and the spin- and charge-correlation
functions. The phase diagram thus determined has the
plaquette-singlet insulator besides the antiferromagnetic in-
sulator and the paramagnetic metal �PM�. We do not find
spin-liquid insulating states without any kind of symmetry
breaking in our phase diagram.

The paper is organized as follows. In Sec. II, we introduce
the model Hamiltonian and briefly explain the PIRG method.
We discuss the quantum phase transitions to obtain the
ground-state phase diagram of the anisotropic checkerboard
Hubbard model in Sec. III. A brief summary is given in Sec.
IV.

II. MODEL AND METHOD

We consider the standard single-band Hubbard model on
the anisotropic checkerboard lattice,

Ĥ = − �
�im,jm��,�

timjm�ĉim�
† ĉjm�� + U�

i,m
n̂im↑n̂im↓, �1�

where ĉim� �ĉim�
† � is an annihilation �creation� operator of an

electron in the ith unit cell with spin � and sublattice index
m �=1,2�, and n̂im�= ĉim�

† ĉim�. U is the Hubbard repulsion
and timjm� �=t , t�� is the transfer integral, which is schemati-
cally shown in Fig. 1�a�. Here, by tuning the ratio of t� / t
systematically, we study the ground-state properties to clarify
how the geometrical frustration affects quantum phase tran-
sitions in the system. The kinetic term of the Hamiltonian

Ĥk is diagonalized at each k. Then we obtain Ĥk
=�k,�,����k�âk��

† âk�� with two eigenvalues,

�1,2�k� = t��cos kx + cos ky�

��t�2�cos kx − cos ky�2 + 16t2�cos2kx

2
��cos2ky

2
� ,

where the + and − signs correspond to the bands �1�k� and
�2�k�. We assume t , t��0 hereafter. The dispersion relations
thus obtained are shown in Fig. 1�b� along the symmetry
lines in the BZ.

We start by mentioning some characteristics in the two
limiting cases of t� / t=0 and t� / t=1. In the case of the square
lattice �t� / t=0�, it is known that the AFI state is stabilized for
any finite U�0 at zero temperature, due to the perfect nest-
ing. In our reduced BZ scheme, the nesting is expressed by
the hybridization between upper and lower bands with the
same momentum along the boundary of BZ as shown in Fig.
1�b�. On the other hand, for the isotropic checkerboard lattice
�t� / t=1�, the upper band is completely flat over the whole

BZ, while the lower band is dispersive at U=0. As shown in
Refs. 14 and 15, the perturbative calculation in U at half
filling in the isotropic case suffers from divergence at third
and higher orders because the lower band is completely filled
and the Fermi level just touches the flat band. This unusual
situation makes the theoretical treatment of the model diffi-
cult.

For highly frustrated lattice systems, it is known that the
powerful quantum Monte Carlo method suffers from the
minus-sign problem. Also, the exact diagonalization calcula-
tion cannot deal with large enough lattice sizes to figure
out the role of frustration in our system. To treat the
strong correlation and frustration effects, we here make
use of the PIRG method,36–38 where we further employ a
quantum-number-projection �QP� operator to the total spin-
singlet state.38 The PIRG+QP method is particularly effi-
cient for studying electron correlations under strong frustra-
tion. The algorithm is very simple. We start from an
unrestricted Hartree-Fock solution40 and reach the ground
state by taking into account quantum fluctuations in a sys-
tematic fashion. We increase the dimension of the truncated
Hilbert space in a nonorthogonal Slater basis numerically
optimized by the path-integral operation. An energy-variance
extrapolation36–39,41 is very efficient in reaching the true
ground state of finite-size systems. We take the number of
Slater basis functions up to 500 and apply an improved it-
eration scheme proposed in our previous paper.20 In the
present study, we carry out the calculation for the N=32
lattice system with periodic boundary conditions. We have
already confirmed that the N=32 lattice system is large
enough for investigating the quantum phase transitions in the
thermodynamic limit in the isotropic case.20

III. RESULTS

To study the quantum phase transitions at zero tempera-
ture, we first consider the virtual displacement of Eg with
respect to t� and U,

�Eg�t�,U� = � �Eg

�t�
�

U

�t� + � �Eg

�U
�

t�
�U , �2�

and evaluate each coefficient. The former coefficient de-
scribes the averaged hopping amplitude along diagonal
bonds, while the latter describes the double occupancy of
electrons at each site. Both quantities provide important in-
formation about the quantum phase transition.

To discuss the spin properties, we also calculate the site-
dependent spin-correlation function Ct�t�� defined by

Ct =
1

N

1

Nt
�
i=1

N

�
	t=1

Nt

	Ŝi · Ŝi+	t

 , �3�

where 	t labels neighboring sites connected by the transfer
integral t and Nt is the number of them �Nt=4, Nt�=2�. Ct�
is obtained by replacing 	t with 	t� in formula �4�. For our
anisotropic checkerboard lattice, the plaquette spin-singlet
state is one of the most probable candidates for the ground
state, so that we examine the plaquette-correlation function
PA�B� defined by
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PA = 	Q̂A
2
 ,

Q̂A =
2

N
�
i=1

pattern A

N/2

�− 1�ip̂i, �4�

where p̂i �=�Ŝ�i
+ Ŝ
i

� · �Ŝ�i
+ Ŝ�i

�� is the ith plaquette-singlet
operator. The corresponding configuration pattern of
plaquettes and their signs �−1�i are schematically shown in
Fig. 1�a�, where filled �open� circles represent positive �nega-
tive� signs for PA. The pattern for the correlation PB is given
by totally shifting the circles to the square with crossing in
Fig. 1�a�. Note here that in the autocorrelation terms �i	p̂i

2

in Eq. �5� equally contribute to PA and PB in the AF ordered
phase, so that the plaquette-correlation functions PA and PB
could have finite values even in this phase. Therefore, we
also examine the value of PA− PB in order to distinguish the
plaquette-singlet phase and the AF phase.

A. Phase transitions under frustration control

In the following, we present the computed results in two
ways; quantum phase transitions are discussed under control
of: �i� frustration and �ii� electron correlations. In this sub-
section, we first address the frustration control and show the
above physical quantities as a function of t� / t for different
choices of U / t. The results are summarized in Fig. 2. Start-
ing from the square lattice with t�=0, we examine the insta-
bility of the AFI state which is stabilized at t�=0 for any
finite U / t�0. In the AFI phase, two electron spins sitting on
the nearest-neighbor �next-nearest-neighbor� sites have AF
�ferromagnetic� correlations, as indeed confirmed in Fig.
2�b�. Correspondingly, the absolute value of the averaged
hopping on the t� bond, ��Eg /�t��U, is strongly suppressed in
the AFI phase �Fig. 2�a��. These results indicate the presence
of AF order in the small t� / t region at least for the Hubbard
repulsion, U�4. We also note that the double occupancy
��Eg /�t��U is almost unchanged in the AFI phase even if t� / t
is altered �though not shown in the figure�. When the effect
of frustration is further enhanced via increase in t� / t, the AFI
state becomes unstable, triggering a phase transition to an-
other insulating phase. The transition point depends on the
strength of the Hubbard U. We indeed observe the abrupt
jump in ��Eg /�t��U at t� / t�0.4, 0.6, and 0.8 for U / t=4, 6,
and 8, respectively �Fig. 2�a��. Similar discontinuities in the
two types of correlation functions are found at the same tran-
sition points in Figs. 2�b� and 2�c�. Therefore we conclude
that the phase transition is of first order.

In order to see the nature of the insulating phase realized
at larger t� / t in detail, we look at the spin correlation Ct�t��
and the plaquette correlation PA�B�. In the case of U / t=4 and
6, we find that the first-order transition occurs between AFI
and PM, as clearly seen in Ct�t�� shown in Fig. 2�b�. In these
cases, once the transition occurs PA and PB are both reduced
and the value of PA− PB is almost zero, implying that the
plaquette-singlet state is not formed. We also note that in the
PM phase −��Eg /�t��U has a value of about 0.3, which is a
little bit smaller than the 1/3 expected for the noninteracting
case �Fig. 2�a��.

In contrast to the above two cases, a quite different be-
havior emerges in the correlation function in the case of
U / t=8: not only the magnitude of PA itself but also that of
PA− PB is abruptly increased at t= tc�, as seen in Fig. 2�c� and
its inset, implying that the transition from AFI to PSI indeed
occurs. We have confirmed that the same type of transition
occurs at t� / t�0.9 for U / t=10. In the strong-coupling limit
with large U, we can check how precise our estimate of the
transition point is in terms of the effective model. In this
limit, our system is mapped to the anisotropic checkerboard
Heisenberg model with two different exchange couplings J
and J�. The value of tc� / t for the transition point then yields
Jc� /J�0.8, which agrees very well with Jc� /J=0.79–0.81 for
the Heisenberg model estimated by a strong-coupling
expansion.33 The good agreement confirms the validity of
our analysis, and in turn supports the existence of the first-
order phase transition between AF Néel and plaquette
valence-bond crystal phase proposed for the Heisenberg
model.32–34 We note here that the above results are totally
consistent with our previous study of the isotropic model
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FIG. 2. �Color online� �a� The averaged hopping −��Eg /�t��U,
�b� the spin correlation Ct�t��, and �c� the plaquette correlation PA�B�
as functions of t� / t on the N=32 lattice system at half filling for
different choices of U / t. The inset of �c� shows PA− PB.

FRUSTRATION EFFECTS IN AN ANISOTROPIC… PHYSICAL REVIEW B 78, 165113 �2008�

165113-3



�t� / t=1�, where much more systematic analyses, performed
with finite-size scaling, give U / t=6.75�0.25 �Ref. 20� for
the PM-PSI transition point.20

B. Phase transitions under control of electron correlations

We next show the physical quantities in Eqs. �3�–�5� as a
function of U / t for different choices of t� / t to discuss the
quantum phase transitions under control of electron correla-
tions. We show the U / t dependence of the double occupancy
��Eg /�U�t� in Fig. 3�a�. The introduction of the Hubbard in-
teraction monotonically decreases the double occupancy, im-
plying that the paramagnetic metallic state is realized in the
small U region. Further increase in the interaction yields the
discontinuity in ��Eg /�U�t�, in accordance with the first-
order Mott transition. We determine the transition point Uc
by estimating the level-crossing point of energies for the
competing metallic and insulating states.

In the case of t� / t=0.5, Ct and Ct� both show discon-
tinuities at Uc / t�5.4 and suddenly increase with opposite
signs, suggesting the transition to the AFI phase. For larger

U ��Uc�, the absolute value of Ct is smaller than that for
Ct=−0.335 known for the square lattice Heisenberg model
�J� /J=0�.42 The difference comes from the presence of
charge fluctuations which reduce the local magnetic moment.
For t� / t=0.8, the phase transitions take place twice at
Uc1 / t�6.6 and Uc2 / t�7.6, and the PSI phase is realized for
Uc1UUc2 between the PM and AFI phases �see Fig. 3�c�
and its inset�. Therefore we can see three types of phase
transitions under control of correlations: a single Mott tran-
sition of PM-AFI �t� / t=0.5� and PM-PSI �t� / t=1� and
double quantum phase transitions of PM-PSI and PSI-AFI
�t� / t=0.8�.

To investigate the nature of the quantum phase transitions
in detail, we further calculate the momentum distribution
n��k� and the momentum-dependent correlation functions in
the charge �spin� sector Nmm��q� �Smm��q�� at t� / t=0.8, which
are given by

n��k� = �
1

2�
�

	âk��
† âk��
 for k � ��,�� ,

1

4�
�,�

	âk��
† âk��
 for k = ��,�� ,  �5�

Nmm��q� =
2

N
�
i,j=1

N/2

�	n̂imn̂jm�
 − 	n̂im
	n̂jm�
�e
iq·�Rim−Rjm��,

�6�

Smm��q� =
2

3N
�
i,j=1

N/2

	Ŝim · Ŝ jm�
e
iq·�Rim−Rjm��, �7�

where n̂im= n̂im↑+ n̂im↓ and Rim represents the position of the
ith unit cell in the mth sublattice. Diagonalizing the 2�2
matrix, we obtain S��q� and N��q� ��=max,min�.

We show the computed results in Fig. 4. In the PM phase,
the quasi-Fermi surface exists and therefore n2�k� has a dis-
continuity at k= �� ,�� for U�Uc1 �Fig. 4�a��. As U in-
creases, the PM state becomes unstable and then the discon-
tinuity of n2�k� disappears at U�Uc1 in the insulating phase
�Figs. 4�b� and 4�c��. Moreover we can confirm that the Hub-
bard interaction reduces the charge fluctuations so that N��q�
is uniformly reduced over the whole BZ �Figs. 4�d�–4�f��. By
contrast, the spin correlations Smax�q� are totally enhanced.
Especially a peak structure is developed for U�Uc1 at q
= �0,0� �Figs. 4�h� and 4�i��, while there is no such peak
structure for U�Uc1 �Fig. 4�g��. Also, divergent increase in
Smax�0,0� is observed beyond a certain interaction Uc2.
Therefore the phase transition between PSI and AFI occurs at
U=Uc2. As a result of the transition, the momentum distri-
butions n1�k� and n2�k� have the reflection symmetry with
respect to the n��k�=0.5 plane �Fig. 4�c��. These properties
in the AFI phase should be adiabatically connected to those
in the spin-density-wave �SDW� phase for the square lattice
Hubbard model �t� / t=0�.

Summarizing all the above results, we end up with the
phase diagram of the Hubbard model on the anisotropic
checkerboard lattice, as shown in Fig. 5. There are three
distinct phases of PM, AFI, and PSI. The quantum phase
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FIG. 3. �Color online� �a� The double occupancy ��Eg /�U�t�, �b�
the spin correlation Ct�t��, and �c� the plaquette correlation PA�B� as
functions of U / t on the N=32 lattice system at half filling for dif-
ferent choices of t� / t. The inset of �c� shows PA− PB.
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transitions among them are of first order. For small U, the
PM phase appears, while for large U and small t�, the AFI
phase is realized in accordance with the known results. The
PSI phase is stabilized in the strong-frustration region with

t� / t�1 and large U. Note that around t� / t�0.8 and U / t
�6, the three phases strongly compete with each other. In
fact, the double phase transitions, which occur around t� / t
=0.8 as U increases, reflect this kind of strong competition.
We would like to stress again that in the two limiting cases
with strong frustration, the phase boundary obtained here
reproduce the known results fairly well: the Heisenberg
limit33 with large U and the isotropic checkerboard limit20

with t� / t=1, both of which were studied in detail previously.
We therefore believe that the phase diagram obtained in this
paper is reliable, although we have restricted our analysis to
the N=32 lattice system.

IV. SUMMARY

We have studied the ground-state properties of the aniso-
tropic checkerboard lattice Hubbard model by means of the
PIRG method. By controlling the geometrical frustration via
a systematic change in the transfer integral t� along diagonal
bonds, we have dealt with the wide parameter region from
the square lattice �t�=0� to the fully frustrated isotropic
checkerboard lattice �t� / t=1�. The ground-state phase dia-
gram thus obtained consists of three distinct quantum phases
depending on the Hubbard interaction U and the strength of
frustration t� / t.

In particular, in the region with strong frustration �t� / t
�1�, we have the plaquette-singlet insulator with broken
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The quantum phase transitions are of first order.

FRUSTRATION EFFECTS IN AN ANISOTROPIC… PHYSICAL REVIEW B 78, 165113 �2008�

165113-5



translational symmetry, which is in contrast to the results for
analogous two-dimensional frustrated electron systems such
as the anisotropic triangular lattice model where a quantum
spin-liquid phase without any symmetry breaking was pro-
posed for the ground state.43–50 Therefore, it remains an im-
portant problem to figure out what is really relevant for re-
alizing the insulating phase without symmetry breaking. It is
also interesting to investigate the nature of the finite-
temperature Mott transition of the anisotropic checkerboard
lattice. In particular, it is worth exploring whether the re-
entrant behavior in the temperature-driven Mott transition
found for the anisotropic triangular lattice model51 could
emerge in the checkerboard lattice model. These issues are
now under consideration.
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